Nitrogen biogeochemistry of three hardwood ecosystems in the Adirondack Region of New York

نویسندگان

  • MYRON J. MITCHELL
  • CHARLES T. DRISCOLL
  • JEFFREY S. OWEN
  • DOUGLAS SCHAEFER
  • ROBERT MICHENER
  • DUDLEY J. RAYNAL
چکیده

The biogeochemistry of nitrogen (N) was evaluated for three forest ecosystems [Woods Lake (WL), Pancake-Hall Creek (PHC) and Huntington Forest (HF)] in the Adirondack region of New York, U.S.A. to evaluate the response of a range of N atmospheric inputs and experimental N additions. Bulk N deposition was higher at sites in the west than those in the central and eastern Adirondacks. These higher atmospheric N inputs were reflected in higher bulk throughfall fluxes of N (WL and PHC, 10.1 and 12.0 kg N ha−1 yr−1, respectively) in the western Adirondacks than at HF (4.6 kg N ha−1 yr−1) in the central Adirondacks. Nitrogen was added to plots as (NH4)2SO4 at 14 and 28 kg N ha −1 yr−1 or as HNO3 at 14 kg N ha−1 yr−1. Litter decomposition rates of Fagus grandifolia and Acer rubrum were substantially higher at WL and PHC compared to HF but were not affected by experimental N additions. Results using mineral soil bags showed no effects of N addition on N and C concentrations in soil organic matter, but C and N concentration increases were less at WL and PHC compared to HF. Soil solution nitrate (NO3 ) concentrations at 15-cm depth in the reference plots were higher at PHC than at WL and HF while at 50-cm concentrations were higher at PHC and WL than at HF. The reference plots at the two sites (WL and PHC) with the highest atmospheric inputs of N exhibited lower N retention (53 and 33%, respectively) than HF (68%) in reference plots. The greatest increase in NO3 loss in response to the experimental treatments occurred at HF where the HNO3 additions resulted in the highest NO − 3 concentrations and lowest N retentions. In contrast, at WL and PHC increases in soil water NO3 were not evident in response to experimental N additions. The results suggest that the two sites (WL and PHC) in the western Adirondacks did not respond to additional N inputs although they have experienced elevated atmospheric N inputs and higher N drainage losses in reference plots than the HF site in the central Adirondacks. Some of these differences in site response may have also been a function of stand age of WL and PHC that were younger (24 and 33 years, respectively) than the HF (age ∼ 70). Highest NO3 fluxes in the reference

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nitrogen deposition and lake nitrogen concentrations: a regional analysis of terrestrial controls and aquatic linkages

Loading of nutrients from terrestrial ecosystems strongly influences the productivity and biogeochemistry of aquatic ecosystems. Human activities can supplement and even dominate nutrient loading to many lakes, particularly in agricultural and urbanized settings. For lakes in more remote regions such as the Adirondack Mountains of New York, N deposition represents the primary potential anthropo...

متن کامل

Nitrogen input–output budgets for lake-containing watersheds in the Adirondack region of New York

The Adirondack region of New York is characterized by soils and surface waters that are sensitive to inputs of strong acids, receiving among the highest rates of atmospheric nitrogen (N) deposition in the United States. Atmospheric N deposition to Adirondack ecosystems may contribute to the acidification of soils through losses of exchangeable basic cations and the acidification of surface wate...

متن کامل

Target loads of atmospheric sulfur and nitrogen deposition for protection of acid sensitive aquatic resources in the Adirondack Mountains, New York

[1] The dynamic watershed acid-base chemistry model of acidification of groundwater in catchments (MAGIC) was used to calculate target loads (TLs) of atmospheric sulfur and nitrogen deposition expected to be protective of aquatic health in lakes in the Adirondack ecoregion of New York. The TLs were calculated for two future dates (2050 and 2100) and three levels of protection against lake acidi...

متن کامل

Chemical response of lakes in the Adirondack Region of New York to declines in acidic deposition.

Long-term changes in the chemistry of wet deposition and lake water were investigated in the Adirondack Region of New York. Marked decreases in concentrations of SO4(2-) and H+ in wet deposition have occurred at two sites since the late 1970s. These decreases are consistent with long-term declines in emissions of sulfur dioxide (SO2) in the eastern United States. Changes in wet NO3- deposition ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2001